Exploring the Geometric Model of Riffle Shuffling
نویسندگان
چکیده
Card shuffling is an interesting topic to explore because of its complexity. Initially, card shuffling seems simple because it is ubitquitous. The majority of people know how to shuffle a deck of cards but few consider the math behind it. However, when it comes to analyzing the elements of card shuffling, it incorporates linear algebra, group theory, probability theory, and Markov Chains. When playing card games, people use various techniques to keep others from having an unfair advantage, the most prevalent technique being cutting and randomizing the deck. In this paper, we will investigate how well two models—the standard model and Geometric Model—describe how humans shuffle cards. We will find the optimal region of fast riffle shuffles for a small deck and measure the randomization of a deck using variation distance. To gain a better understanding of the Geometric Model of card shuffling we will also examine the transition matrix that is formed from the probabilities of transitioning from one deck to another. We found the eigenvalues and eigenvectors for the transition matrix for small decks.
منابع مشابه
Mathematical Developments from the Analysis of Riffle Shuffling
1. Introduction The most common method of mixing cards is the ordinary riffle shuffle, in which a deck of n cards (often n = 52) is cut into two parts and the parts are riffled together. A sharp mathematical analysis for a natural model of riffle shuffling was carried out by Bayer and Diaconis (1992). This gives closed form expressions for the chance of any permutation and allows analytic appro...
متن کاملA Hopf-power Markov chain on compositions
In a recent paper, Diaconis, Ram and I constructed Markov chains using the coproduct-then-product map of a combinatorial Hopf algebra. We presented an algorithm for diagonalising a large class of these “Hopf-power chains”, including the Gilbert-Shannon-Reeds model of riffle-shuffling of a deck of cards and a rock-breaking model. A very restrictive condition from that paper is removed in my thes...
متن کاملBiased Riffle Shuffles, Quasisymmetric Functions, and the Rsk Algorithm
This paper highlights the connections between riffle shuffles and symmetric functions. We analyze the effect of a riffle shuffle followed by the RSK algorithm on the resulting permutation. The theory of shuffling also allows us to deduce certain quasisymmetric function identities. Finally, we present a result about the eigenvalues of the Markov chain induced by riffle shuffles.
متن کاملv 4 [ m at h . C O ] 1 5 Ju l 1 99 9 Descent Algebras , Hyperplane Arrangements , and Shuffling Cards
Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These coincide for types A,B,C, H3, and rank two groups. Both notions have the same, simple eigenvalues. The hyperplane definition is especially natural and satisfies a positivity property when W is crystallographic and the...
متن کاملDescent Algebras , Hyperplane Arrangements , and Shuffling Cards
Abstract Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These definitions coincide for types A,B,H3, and rank two groups. Both notions satisfy a convolution property and have the same simple eigenvalues. The hyperplane definition is especially natural and satisfies a po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014